Gegenbauer Series for Numerical Solution of Fredholm Integral Equations of the Second Kind
نویسندگان
چکیده
In this work, to solve the integral equation we rely on technique of orthogonal polynomials, as some authors have shown in past [11,12]. However, which simplifies form a matrix where it corresponds set linear algebraic equations. Here approximation series called Gegenbauer series, leads us rough and effective solution error obtained is small compared results by authors.
منابع مشابه
Closed-form Error Estimates for the Numerical Solution of Fredholm Integral Equations of the Second Kind
Closed-form algebraic formulae are derived for the local error incurred in the numerical solution of integral equations by iterated collocation methods, the analysis being illustrated by application to Fredholm integral equations of the second kind. The novel error analysis uses an asymptotic approach, in the small parameter of the numerical mesh size, applied to a finite-rank degenerate-kernel...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملTheory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematics and Applications
سال: 2023
ISSN: ['0975-8607', '0976-5905']
DOI: https://doi.org/10.26713/cma.v14i1.2003